ULTIMATE GI REPAIR
A SYNERGISTIC combination of BPC-157, Larazotide Acetate, Zinc Caronsine, Quercetin and Tributyrin to create a one of the most powerful gastrointestinal healing products on the market.
$229.95
Or 4 payments of $57.49 with Zip or PayPal-In-4
Or
$219.95/Month
For a Monthly Subscription. Save More & Guarantee Your Supply (Stocks Sell out Quickly)
FAQ
There is no denying that Ultimate GI Repair is on the pricier end.
This is due to the compounds used within Ultimate GI Repair and their difficulty of sourcing and manufacturing.
Our customers typically see results within 1 month of taking the product.
Ultimate GI has been created to help speed up the process of healing.
It is not something that was intended or needs to be taken long term.
We recommend customers cycle the product by taking it for 1 month and if they still haven’t seen noticeable improvements an additional month and then breaking from it before cycling it again as needed.

60 Capsules. 30 Servings (1 Month Supply)

Joe Rogan, Ben Greenfield and Dave Asprey On BPC 157 (Star Ingredient in Ultimate GI)
DESCRIPTION
ULTIMATE GI REPAIR
A SYNERGISTIC combination of peptides BPC-157, Larazotide Acetate, and Naturals Zinc L-Caronsine, Quercetin (As EMIQ and Anhydrous), Copper and Tributyrin to create THE most powerful Gastro-Intestinal healing product on the market!
Each bottle contains 60 capsules; 30 serves.
Legal Disclaimer:
*This product is intended for research purposes only. All product
information available on the website is for educational purposes only.
Bodily introduction of any kind into humans is done at the person’s own
risk, and LVLUP Health assumes no responsibility for health outcomes,
good or bad that may result from ingestion or use. Use should be
supervised by a qualified healthcare professional.

INGREDIENTS
BPC-157
– As highly absorbable form BPC157-Arginine
– Enhances injury and wound recovery
– Heals the Gastro-Intestinal (GI) tract
– Stimulates blood vessel formation (angiogenesis)
– Upregulates Growth Hormone Receptors
– Enhances collagen production and formation
– Anti-Inflammatory
– Cytoprotective
-Modulates Nitric Oxide (NO)
– Reduces Neuroinflammation
LARAZOTIDE ACETATE
– AT1001
– Zonulin Antagonist
– Decreases intestinal permeability.
– Prevents Tight Junction breakdown/disassembly
– The “Anti-Coeliac” peptide
– May reduce food sensitivity
– Immune modulating
– Reduces Neuroinflammation
*Mechanisms are based on preliminary study interpretations only. Research and clinical trials are still being performed on this peptide.
ZINC L-CARNOSINE
– Anti-inflammatory/Antioxidant
– Accelerates gastrointestinal wound healing
– Anti-Ulcer
– Stimulate mucus production
– Maintains gastric mucosal barrier integrity.
– Reduces intestinal hyper-permeability
– Cytoprotective
– Stabilises mast cells (Antihistamine)
QUERCETIN
– May helps with Allergies and histamine
– Blocks mast cells degranulation (Antihistamine)
– “Seals” the tight junction GI barrier
– Anti-Inflammatory/ Anti- Oxidant
– Cytoprotective
– May support heart health
– Immune Modulating
– Hepatoprotective (helps the liver)
TRIBUTYRIN
– Increases Mucas Production (Improves gut lining)
– Accelerates gastrointestinal wound healing
– Anti-Ulcer
– Stimulate mucus production
– Maintains gastric mucosal barrier integrity.
– Reduces intestinal hyper-permeability
– Cytoprotective
– Stabilises mast cells (Antihistamine)
OTHER
– Copper Citrate (For Zinc Copper interplay balance; GI Repair contains a very high dose of Zinc, which needs to be balanced out by copper)
– Sodium Bicarbonate (Acid buffer for increased peptide absorption)
You May Also Like
REVIEWS
DOSING INSTRUCTIONS

Take one capsule twice daily with food or as directed by health professional.
Do NOT take on an empty stomach. High dose zinc may cause stomach upset, nasaea or vomiting when taken away from food.
RESEARCH
1. Butler, R. J., Marchesi, S., Royer, T., & Davis, I. S. (2007). Effective Therapy of Transected Quadriceps Muscle in Rat:Gastric Pentadecapeptide BPC 157. Journal of Orthopaedic Research September, 25(June), 1121–1127. https://doi.org/10.1002/jor
2. Brcic, L., Brcic, I., Staresinic, M., Novinscak, T., Sikiric, P., & Seiwerth, S. (2009). Modulatory effect of gastric pentadecapeptide BPC 157 on angiogenesis in muscle and tendon healing. Journal of Physiology and Pharmacology : An Official Journal of the Polish Physiological Society, 60 Suppl 7, 191–196.
3. Cerovecki, T., Bojanic, I., Brcic, L., Radic, B., Vukoja, I., Seiwerth, S., & Sikiric, P. (2010). Pentadecapeptide BPC 157 (PL 14736) improves ligament healing in the rat. Journal of Orthopaedic Research, 28(9), 1155–1161. https://doi.org/10.1002/jor.21107
4. Chang, C. H., Tsai, W. C., Hsu, Y. H., & Pang, J. H. S. (2014). Pentadecapeptide bpc 157 enhances the growth hormone receptor expression in tendon fibroblasts. Molecules, 19(11), 19066–19077. https://doi.org/10.3390/molecules191119066
5. Chang, C. H., Tsai, W. C., Lin, M. S., Hsu, Y. H., & Su Pang, J. H. (2011). The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration. Journal of Applied Physiology, 110(3), 774–780. https://doi.org/10.1152/japplphysiol.00945.2010
6. Gjurasin, M., Miklic, P., Zupancic, B., Perovic, D., Zarkovic, K., Brcic, L., Sikiric, P. (2010). Peptide therapy with pentadecapeptide BPC 157 in traumatic nerve injury. Regulatory Peptides, 160(1–3), 33–41. https://doi.org/10.1016/j.regpep.2009.11.005
7. Gwyer, D., Wragg, N. M., & Wilson, S. L. (2019). Gastric pentadecapeptide body protection compound BPC 157 and its role in accelerating musculoskeletal soft tissue healing. Cell and Tissue Research, 377(2), 153–159. https://doi.org/10.1007/s00441-019-03016-8
8. Perovic, D., Kolenc, D., Bilic, V., Somun, N., Drmic, D., Elabjer, E., … Sikiric, P. (2019). Stable gastric pentadecapeptide BPC 157 can improve the healing course of spinal cord injury and lead to functional recovery in rats. Journal of Orthopaedic Surgery and Research, 14(1), 1–12. https://doi.org/10.1186/s13018-019-1242-6
9. Pevec, D., Novinscak, T., Brcic, L., Sipos, K., Jukic, I., Staresinic, M., … Sikiric, P. (2010). Impact of pentadecapeptide BPC 157 on muscle healing impaired by systemic corticosteroid application. Medical Science Monitor, 16(3), 81–88. https://pubmed.ncbi.nlm.nih.gov/20190676/
10. Seiwerth, S., Sikiric, P., Grabarevic, Z., Zoricic, I., Hanzevacki, M., Ljubanovic, D., … Kolega, Z. (1997). BPC 157’s effect on Healing. Journal of Physiology Paris, 91(3–5), 173–178. https://doi.org/10.1016/S0928-4257(97)89480-6
11. Sever, A. Z., Sever, M., Vidovic, T., Lojo, N., Kolenc, D., Vuletic, L. B., … Sikiric, P. (2019). Stable gastric pentadecapeptide BPC 157 in the therapy of the rats with bile duct ligation. European Journal of Pharmacology, 847(January), 130–142.
https://doi.org/10.1016/j.ejphar.2019.01.030
12. Sikiric, P. (1999). The pharmacological properties of the novel peptide BPC 157 (PL-10). Inflammopharmacology, 7(1), 1–14. https://doi.org/10.1007/s10787-999-0022-z
13. Sikirić, P., Petek, M., Ručman, R., Seiwerth, S., Grabarević, Z., Rotkvić, I., … Karakas, I. (1993). A new gastric juice peptide, BPC. An overview of the stomach-stress-organoprotection hypothesis and beneficial effects of BPC. Journal of Physiology – Paris, 87(5), 313–327. https://doi.org/10.1016/0928-4257(93)90038-U
14. Sikiric, P., Seiwerth, S., Rucman, R., Kolenc, D., Vuletic, L. B., Drmic, D., Grgic, T., Strbe, S., Zukanovic, G., Crvenkovic, D., Madzarac, G., Rukavina, I., Sucic, M., Baric, M., Starcevic, N., Krstonijevic, Z., Bencic, M. L., Filipcic, I., Rokotov, D. S., & Vlainic, J. (2016). Brain-gut Axis and Pentadecapeptide BPC 157: Theoretical and Practical Implications. Current neuropharmacology, 14(8), 857–865. https://doi.org/10.2174/1570159×13666160502153022
15. Staresinic, M., Sebecic, B., Patrlj, L., Jadrijevic, S., Suknaic, S., Perovic, D., … Sikiric, P. (2003). Gastric pentadecapeptide BPC 157 accelerates healing of transected rat Achilles tendon and in vitro stimulates tendocytes growth. Journal of Orthopaedic Research, 21(6), 976–983. https://doi.org/10.1016/S0736-0266(03)00110-4
1.Gopalakrishnan, S., Tripathi, A., Tamiz, A. P., Alkan, S. S., & Pandey, N. B. (2012). Larazotide acetate promotes tight junction assembly in epithelial cells. Peptides, 35(1), 95–101. https://doi.org/10.1016/j.peptides.2012.02.016
2. Gopalakrishnan, S., Durai, M., Kitchens, K., Tamiz, A. P., Somerville, R., Ginski, M., Paterson, B. M., Murray, J. A., Verdu, E. F., Alkan, S. S., & Pandey, N. B. (2012). Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides, 35(1), 86–94. https://doi.org/10.1016/j.peptides.2012.02.015
3. Kelly, C. P., Green, P. H., Murray, J. A., Dimarino, A., Colatrella, A., Leffler, D. A., Alexander, T., Arsenescu, R., Leon, F., Jiang, J. G., Arterburn, L. A., Paterson, B. M., Fedorak, R. N., & Larazotide Acetate Celiac Disease Study Group (2013). Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Alimentary pharmacology & therapeutics, 37(2), 252–262. https://doi.org/10.1111/apt.12147
4. Khaleghi, S., Ju, J. M., Lamba, A., & Murray, J. A. (2016). The potential utility of tight junction regulation in celiac disease: focus on larazotide acetate. Therapeutic advances in gastroenterology, 9(1), 37–49. https://doi.org/10.1177/1756283X15616576
5. Leffler, D. A., Kelly, C. P., Abdallah, H. Z., Colatrella, A. M., Harris, L. A., Leon, F., Arterburn, L. A., Paterson, B. M., Lan, Z. H., & Murray, J. A. (2012). A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. The American journal of gastroenterology, 107(10), 1554–1562. https://doi.org/10.1038/ajg.2012.211
6. Serena, G., Kelly, C. P., & Fasano, A. (2019). Nondietary Therapies for Celiac Disease. Gastroenterology clinics of North America, 48(1), 145–163. https://doi.org/10.1016/j.gtc.2018.09.011
7. Valitutti, F., & Fasano, A. (2019). Breaking Down Barriers: How Understanding Celiac Disease Pathogenesis Informed the Development of Novel Treatments. Digestive diseases and sciences, 64(7), 1748–1758. https://doi.org/10.1007/s10620-019-05646-y
8. Yoosuf, S., & Makharia, G. K. (2019). Evolving Therapy for Celiac Disease. Frontiers in pediatrics, 7, 193. https://doi.org/10.3389/fped.2019.00193
1. Hewlings, S., & Kalman, D. (2020). A Review of Zinc-L-Carnosine and Its Positive Effects on Oral Mucositis, Taste Disorders, and Gastrointestinal Disorders. Nutrients, 12(3), 665. https://doi.org/10.3390/nu12030665
2. Lyseng-Williamson, K.A. Zinc L-carnosine in gastric ulcers: a profile of its use. Drugs Ther Perspect 35, 463–469 (2019). https://doi.org/10.1007/s40267-019-00667-z
3. Mahmood, A., FitzGerald, A. J., Marchbank, T., Ntatsaki, E., Murray, D., Ghosh, S., & Playford, R. J. (2007). Zinc carnosine, a health food supplement that stabilises small bowel integrity and stimulates gut repair processes. Gut, 56(2), 168–175. https://doi.org/10.1136/gut.2006.099929
4. Miyoshi, A. Matsu, H et al. (1995). Clinical Evaluation of Zinc Carnosine in Treatment of Gastritis. http://www.citicam.net/moondance/pdf/4.pdf
5. Odashima, M., Otaka, M., Jin, M., Wada, I., Horikawa, Y., Matsuhashi, T., Ohba, R., Hatakeyama, N., Oyake, J., & Watanabe, S. (2006). Zinc L-carnosine protects colonic mucosal injury through induction of heat shock protein 72 and suppression of NF-kappaB activation. Life sciences, 79(24), 2245–2250. https://doi.org/10.1016/j.lfs.2006.07.032
6. Ooi, T. C., Chan, K. M., & Sharif, R. (2017). Antioxidant, Anti-inflammatory, and Genomic Stability Enhancement Effects of Zinc l-carnosine: A Potential Cancer Chemopreventive Agent?. Nutrition and cancer, 69(2), 201–210. https://doi.org/10.1080/01635581.2017.1265132
7. Sakae, K., Agata, T., Kamide, R. and Yanagisawa, H. (2013). Effects of L‐Carnosine and Its Zinc Complex (Polaprezinc) on Pressure Ulcer Healing. Nutrition in Clinical Practice, 28: 609-616. https://doi.org/10.1177/0884533613493333
8. Sharif, R., Thomas, P., Zalewski, P., Graham, R. D., & Fenech, M. (2011). The effect of zinc sulphate and zinc carnosine on genome stability and cytotoxicity in the WIL2-NS human lymphoblastoid cell line. Mutation research, 720(1-2), 22–33. https://doi.org/10.1016/j.mrgentox.2010.12.004
9. Sturniolo, G. C., Fries, W., Mazzon, E., Di Leo, V., Barollo, M., & D’inca, R. (2002). Effect of zinc supplementation on intestinal permeability in experimental colitis. The Journal of laboratory and clinical medicine, 139(5), 311–315. https://doi.org/10.1067/mlc.2002.123624
10. Sturniolo, G. C., Di Leo, V., Ferronato, A., D’Odorico, A., & D’Incà, R. (2001). Zinc supplementation tightens “leaky gut” in Crohn’s disease. Inflammatory bowel diseases, 7(2), 94–98. https://doi.org/10.1097/00054725-200105000-00003
1. Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J. D., Serino, M., Tilg, H., Watson, A., & Wells, J. M. (2014). Intestinal permeability-a new target for disease prevention and therapy. BMC gastroenterology, 14, 189. https://doi.org/10.1186/s12876-014-0189-7
2. Graefe EU, Wittig J, Mueller S, Riethling AK, Uehleke B. (2001). Pharmacokinetics and bioavailability of quercetin glycosides in humans. Journal of Clinical Pharmacology. 41:492-499. http://ucce.ucdavis.edu/files/datastore/608-67.pdf
3. Groschwitz KR, and Hogan SP. (2009). Intestinal barrier function: molecular regulation and disease pathogenesis. Journal of Allergy and Clinical Immunology. 124(1):3-20. https://www.ncbi.nlm.nih.gov/pubmed/19560575
4. Li Y, Yao J, Han C, Yang J, Chaudhry MT. (2016). Quercetin, inflammation, and immunity. Nutrients. 8(3):167. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808895/
5. Pearce, F. L., Befus, A. D., & Bienenstock, J. (1984). Mucosal mast cells. III. Effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells. The Journal of allergy and clinical immunology, 73(6), 819–823. https://doi.org/10.1016/0091-6749(84)90453-6
6. Salehi, B., Machin, L., Monzote, L., Sharifi-Rad, J., Ezzat, S. M., Salem, M. A., Merghany, R. M., El Mahdy, N. M., Kılıç, C. S., Sytar, O., Sharifi-Rad, M., Sharopov, F., Martins, N., Martorell, M., & Cho, W. C. (2020). Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS omega, 5(20), 11849–11872. https://doi.org/10.1021/acsomega.0c01818
7. Suzuki, T., & Hara, H. (2011). Role of flavonoids in intestinal tight junction regulation. The Journal Of Nutritional Biochemistry, 22(5), 401-408. doi: 10.1016/j.jnutbio.2010.08.001
8. Toth S, Jonecova Z, Curgali K, Maretta M, Soltes J. (2017). Quercetin attenuates the ischemia reperfusion induced COX-2 and MPO expression in the small intestine mucosa. Biomedical Pharmacotherapy. 95:246-254. https://www.ncbi.nlm.nih.gov/pubmed/28858733
1.Cresci, G. A., Glueck, B., McMullen, M. R., Xin, W., Allende, D., & Nagy, L. E. (2017). Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. Journal of gastroenterology and hepatology, 32(9), 1587–1597. https://doi.org/10.1111/jgh.13731
2. HM Hamer, D Jonkers, K Venema, S Vanhoutvin, FJ Troost, RJ Brummer. Review article: the role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics. 2008, 27(104-119).
3. Miyoshi, M., Iizuka, N., Sakai, S., Fujiwara, M., Aoyama-Ishikawa, M., Maeshige, N., Hamada, Y., Takahashi, M., & Usami, M. (2015). Oral tributyrin prevents endotoxin-induced lipid metabolism disorder. Clinical nutrition ESPEN, 10(2), e83–e88. https://doi.org/10.1016/j.clnesp.2015.02.001
4. Mortensen, P. B., & Clausen, M. R. (1996). Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scandinavian journal of gastroenterology. Supplement, 216, 132–148. https://doi.org/10.3109/00365529609094568
5. Murray, R. L., Zhang, W., Iwaniuk, M., Grilli, E., & Stahl, C. H. (2018). Dietary tributyrin, an HDAC inhibitor, promotes muscle growth through enhanced terminal differentiation of satellite cells. Physiological reports, 6(10), e13706. https://doi.org/10.14814/phy2.13706
6. Ohira H, Fujioka Y, Katagiri C, Mamoto R, Aoyama-Ishikawa M, Amako K, Izumi Y, Nishiumi S, Yoshida M, Usami M, Ikeda M. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb. 2013;20(5):425-42.
7. Roberto Berni Canani, Margherita Di Costanzo and Ludovica Leone. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clinical Epigenetics 2012, 4:4. http://www.clinicalepigeneticsjournal.com/content/4/1/4
8. Scheppach W. (1994). Effects of short chain fatty acids on gut morphology and function. Gut, 35(1 Suppl), S35–S38. https://doi.org/10.1136/gut.35.1_suppl.s35
9. Singh, N., Thangaraju, M., Prasad, P,D., Martin, P,M., Lambert, N,A., Boettger, T., Offermanns, S., Ganapathy, V. (2010) Blockade of Dendritic Cell Development by Bacterial Fermentation Products Butyrate and Propionate through a Transporter (Slc5a8)-dependent Inhibition of Histone Deacetylases. The Journal of Biological Chemistry. Sept 2010. 285: 36 (27601-27609). http://www.jbc.org/content/285/36/27601.full.pdf
10. Tazoe, H., Otomo, Y., Kaji, I., Tanaka, R., Karaki, S. I., & Kuwahara, A. (2008). Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society, 59 Suppl 2, 251–262.
11. Wang, C., Cao, S., Zhang, Q., Shen, Z., Feng, J., Hong, Q., Lu, J., Xie, F., Peng, Y., & Hu, C. (2019). Dietary Tributyrin Attenuates Intestinal Inflammation, Enhances Mitochondrial Function, and Induces Mitophagy in Piglets Challenged with Diquat. Journal of agricultural and food chemistry, 67(5), 1409–1417. https://doi.org/10.1021/acs.jafc.8b06208
12. Wang, C., Cao, S., Shen, Z., Hong, Q., Feng, J., Peng, Y., & Hu, C. (2019). Effects of dietary tributyrin on intestinal mucosa development, mitochondrial function and AMPK-mTOR pathway in weaned pigs. Journal of animal science and biotechnology, 10, 93. https://doi.org/10.1186/s40104-019-0394-x